1 [4] Miskolczi, F., M., 2014: The Greenhouse Effect and the Infrared Radiative Structure of the Earth's Atmosphere. Development in Earth Science Volume 2, 2014,
https://www.researchgate.net/publication/268507883
2 [5] Miskolczi, F., 2018: Értekezés az üvegházhatásról. Magyar Energetika, 2018/3, http://magyarenergetika.hu/wp-content/uploads/me/ME_2018-3.pdf
3 [11] Miskolczi F. és Mlynczak M.: (2004): The greenhouse effect and the spectral decomposition of the clear-sky terrestrial radiation. Idojárás, 108, 4, 209–251, Corpus ID: 44927545, https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=261
4 [15] Ferenc M. Miskolczi, 2007: Greenhouse effect in semi-transparent planetary atmospheres. IDŐJÁRÁS, Quarterly Journal of the Hungarian Meteorological Service, Vol. 111, No. 1, January–March 2007, pp. 1–40,
https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=198
5 [23] Miskolczi, F.M., 2010: The stable stationary value of the earth's global average atmospheric Planck-weighted greenhouse gas optical thickness. Energy & Environment 21,4 (2010) 243-262 https://doi.org/10.1260%2F0958-305X.21.4.243
6 [25] Miskolczi, F., 1989: High resolution atmospheric radiative transfer code (HARTCODE).
https://www.researchgate.net/publication/287994595
DOI: 10.13140/RG.2.1.2319.6240
7 [40] Miskolczi, F. és Mlynczak M., 2004: Implementation of CO2 Q band line mixing computations into line-by-line atmospheric radiative transfer codes. IDŐJÁRÁS, Quarterly Journal of the Hungarian Meteorological Service, Vol. 108, No. 1, January– March 2004, pp. 51–63
https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=258
8 [43] Ferenc Miskolczi, 2001: High accuracy skin temperature retrieval from spectral data of multichannel IR imagers. IDŐJÁRÁS, Quarterly Journal of the Hungarian Meteorological Service, Vol. 105, No. 4 - Vol. 106, No. 1, October 2001 – March 2002, pp. 243–251
https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=282
9 [44] Rolando Rizzi, Marco Matricardi, and Ferenc Miskolczi, 2002: Simulation of uplooking and downlooking high-resolution radiance spectra with two different radiative transfer models. APPLIED OPTICS, Vol. 41, No. 6, 20 February 2002 https://doi.org/10.1364/AO.41.000940
10 [47] F. M. MISKOLCZI and M. G. MLYNCZAK (2005), AIRS – CERES Window Radiance Comparison, AIRS-to-CERES Radiance Conversion. NASA, CERES Science Team Meeting, November 2005,
https://ceres.larc.nasa.gov/documents/STM/2005-11/miskolczi_airs.pdf
11 [48] F. MISKOLCZI and R. GUZZI, (1993), Effect of the Non-Uniform Spectral Dome Transmittance on the Accuracy of the IR Radiation Measurements Using Shielded Pyrradiometers and Pyrgeometers. Applied Optics, Vol. 32, No. 18, 1993, 3257-3265 https://doi.org/10.1364/AO.32.003257
12 [49] David P. Kratz, Martin G. Mlynczak, Christopher J. Mertens, Helen Brindley, Larry L. Gordley, Javier Martin-Torres, Ferenc M. Miskolczi, David D. Turner, 2005: An inter- comparison of far-infrared line-by-line radiative transfer models. Journal of Quantitative Spectroscopy & Radiative Transfer 90 (2005) 323–341, doi:10.1016/j.jqsrt.2004.04.006
13 [51] F. MISKOLCZI, (1994): Modeling of Downward Surface Longwave Flux Density for Global Change Applications and Comparisons with Pyrgeometer Measurements. Journal of Atmospheric and Oceanic Technology, Vol. 11, No. 2, 608-612.
https://doi.org/10.1175/1520-0426(1994)011%3C0608:MODSLF%3E2.0.CO;2
14 [52] F. MISKOLCZI, R. T. PINKER and T. O. ARO, (1997): Surface Radiative Fluxes in Sub-Sahel Africa. Journal of Applied Meteorology, Vol. 36, No. 5, 521-529
https://doi.org/10.1175/1520-0450(1997)036<0521:SRFISS>2.0.CO;2
15 [53] F. MISKOLCZI (2000): Remote Sensing Using the IR Channels of the Global Imager on Board the Advanced Earth Observing Satellite II.
Presentation at the National Oceanic and Atmospheric Administration, Silver Spring. Washington DC. in 2000, 1-50
16 [63] Miskolczi, F. , R. Rizzi, R. Guzzi and M. M. Bonzagni, 1988: A new high resolution atmospheric transmittance code and its application in the field of remote sensing.
Proc. IRS’88 current problems in Atmospheric Radiation, Lille 18-24 August 1988, 388-391
17 [65] F. M. MISKOLCZI (2011): The stable stationary value of the Earth's global average atmospheric infrared optical thickness. European Geophysical Union, EGU 2011, Vienna, 13662, 1-20, https://www.researchgate.net/publication/259802995
18 [80] R. SAUNDERS, P. RAYER, P. BRUNEL, A. von ENGELN, N. BORMANN, L. STROW, S. HANNON, S. HEILLIETTE, X. LIU, F. MISKOLCZI, Y. HAN, G. MASIELLO, J.-L. MONCET, G. UYMIN, V. SHERLOCK, and D. S. TURNER (2007): A comparison of radiative transfer models for simulating Atmospheric Infrared Sounder (AIRS) radiances.
JGR-Atmosphere, Vol. 112, D01S90, 2007, 1-17
http://onlinelibrary.wiley.com/doi/10.1029/2006JD007088/epdf, doi:10.1029/2006JD007088
19 [133] G. Marx and F. Miskolczi, 1981: The CO2 Greenhouse Effect and the Thermal History of the Atmosphere. Adv. Space Res. , Vol.1, pp. 5-18, © COSPAR,1981. Printed in Great Britain. https://pubmed.ncbi.nlm.nih.gov/11541718/, DOI: 10.1016/0273-1177(81)90238-6
20 [135] Miskolczi Ferenc, 2012: Megjegyzések Zágoni Miklós "Miskolczi Ferenc kutatási eredményeinek kritikai vizsgálata" című MTA GGKI Beszámoló Jelentéséhez.
http://klimaszkeptikusok.hu/wp-content/uploads/2017/04/Miskolczi_MTA_comments.pdf
21 [150] M. Mlynczak and F. Miskolczi, 2004: Far-Infrared Properties of the Earth’s Radiation Budget. AIRS Science Team Meeting, March 31, 2004, Goddard Space Flight Center https://airs.jpl.nasa.gov/documents/science_team_meeting_archive/2004_03/slides/Mlynczak_AIRS_Science.ppt
22 [169] Marquis Who's Who 2017: Dr. Miskolczi has been endorsed by Marquis Who's Who as a leader in the field of physics.
23 [174] Miskolczi, F. , 2016:Expert opinion on the greenhouse gas theories and the observed
infrared absorption properties of the Earth's atmosphere.
https://climatecite.com/ferenc-miskolczi-testimony-in-mann-vs-ball-libel-case/
24 G. MAJOR, I. MERSICH and F. MISKOLCZI, 1974: Sensitivity distribution along the strips of Compensation pyrheliometers Institute for Atmospheric Physics, Budapest, Hungary
(Manuscript received October 5, 1973; revised version April 10, 1974), Tellus XXVI (1974), 6 https://doi.org/10.3402/tellusa.v26i6.9877
25 R. T. Pinker, I. Laszlo, and F. Miskolczi, 1994: Photosynthetic climate in selected regions during the northern hemisphere growing season. GLOBAL BIOGEOCHEMICAL CYCLES, VOL. 8, NO. 2, PAGES 117-125, JUNE 1994 https://doi.org/10.1029/93GB03395
26 F. MISKOLCZI, 1979: Determining total ozone content in the atmosphere using satellite measurements. Acta Astronautica Vol. 6. pp. 1399-1408, Pergamon Press Ltd., 1979. Printed in Great Britain doi:10.1016/0094-5765(79)90131-0
27 D. Spankuch and F. Miskolczi, 1983: VALIDATION OF 9.6 µm OZONE TRANSMITTANCES BY SPECTRAL RADIANCE SATELLITE MEASUREMENTS. Adv. Space Res. Vol.2 No. 6, pp. 89-92, 1983 DOI:10.1016/0273-1177(82)90127-2
28 F. MISKOLCZI, 1981: Some results of the direct calculation of atmospheric ozone transmittances and their application for remote sensing of atmospheric profiles. IDŐJÁRÁS, Vol. 85 No. 5 Sept-Oct 1981 256-261
https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=1549
29 Ferenc Miskolczi, 2023: Greenhouse Gas Theories and Observed Radiative Properties
of the Earth’s Atmosphere. Science of Climate Change, Vol. 3.3 (2023) pp. 232-289
https://doi.org/10.53234/SCC202304/05